Rotman School of Management RIT User Guide

128 58

» UNIVERSITY OF TORONTO Build 1.02

RIT VBA API Tutorial

Table of Contents
[oTo 18T o] o STV PROS PP 2
Introduction to EXCel VBA (DEVEIOPEN)ciieiieieiiecie ettt st ste e sne e nneas 3
VBA AP CommMaNds FOr RIT ..ot 10
VBA AP INITIAHZATION ...t bbbttt 11
Algorithmic Trading Example - ArDitrageccooveieiieiiie e 21

Copyright © 2014, Rotman School of Management. No part of this publication may be reproduced, stored in a retrieval system,
used in a spreadsheet, or transmitted in any form or by any means - electronic, mechanical, photocopying, recording or
otherwise - without the permission of Rotman School of Management.

Introduction

The Rotman Interactive Trader allows users to query for market data and submit trading instructions
through a Microsoft Excel Visual Basic for Applications (VBA) API as well as through a REST API. The
purpose of this is to allow for program “algorithmic” trading, where the computer executes trades
based on a pre-defined set of instructions or parameters.

This tutorial document focuses on interacting with the Excel VBA API and assumes that the user has
no previous knowledge of VBA, and begins by discussing the concepts of programming before in-
depth trading algorithms are introduced. Those who are already familiar with VBA should skip to the
section entitled “VBA API commands for RIT”.

This document also does not discuss the strategies behind algorithmic trading. Rather, it introduces

the user to the tools that are available through the RIT Excel VBA API. Users are encouraged to
explore possible strategies and techniques and use the building blocks here to implement them.

Copyright © 2014, Rotman School of Management. 2

Introduction to Excel VBA (Developer)

To access the VBA editor in Excel, first ensure that it is turned on by clicking on “File” on the top-left
corner of the screen, then click on “Options”. Once the “Excel Options” window is opened, choose
“Customize Ribbon” on the left menu bar, and ensure that “Developer” on the right side is checked.
Once this is checked, the Developer Tab will appear in the original list of Excel tabs.

AN R A | Bookl - Microsoft Excel B
Excel Options 7| x
Home Insert Pag
General . .
| save ﬁﬁ Customize the Ribbon.
- Infor Formulas
Save As Choose commands from: (i Customize the Ribbon: i
L3 Open Froofing IPopuIar Commands ;I IMam Tabs ;I
. J_[Save
L Close =2 . ‘h All Chart Types... | Main Tabs
Pre anguage i Borders 3 El I Home
Info - Work | advanced Calculate Now Clipboard
= Center Font
Recent Customize Ribbon f;' Conditional Formatting 3 Alignment
—— ‘ X
4] Connedtions Number
e i Quick Access Toolbar 3 copy Styles
INE 11T Custom Sort... Cells
£ | Add-Ins % cut Editing
Print Che Trust Center A~ Decrease Font Size [Insert
5 5 Delete Cells.. [Page Layout
Save & Send }"' Delete Sheet Columns W Formulas
= Delete Sheet Rows W Data
|ii=d E-mail [P | W Review " |
Lo y <3 Fill Color » —
Y Ve Fitter el Developer = |
Add-Ins - v Font =
3 opti Vers A Font Color y — [V Acrobat
3 ptions Font Size T ¥ Thomson Reuters
B Exit 1%F Format Cells... ¥ Background Remaval
Format Painter
E Freeze Panes 3
A" Increase Font Size
j’ﬂ Insert Cells...
Insert Function...
uﬁd Insert Sheet Columns
j’ﬁ Insert Sheet Rows
B Macros MNew Tab | New Group | Rename... |
Merge & Center Customizations: Reset = | i
Mame Manager
|1 New i Import/Export ¥ |
OK I Cancel |

o

You can access the VBA editor by clicking on the “Visual Basic” icon within the Developer tab.
Hint: You can access this at anytime with the shortcut Alt+F11

(w - o T Bookl - Microsoft Excel

Home Insert Page Layout Formulas Data Review View Add-Ins

q ERecord Macro ‘T O _l ¢ j" Properties E Map Properties :ﬁlmpmt
= L st T :

ﬁ =a EUse Relative References ~N Q,J View Code <q'.'_}_j Expansion Packs =1, Export

Wisual | Macros ; Insert Design g . Source (. .
iy _ﬁMacrc Security > Maode Run Dialog § Refresh Data
_Code Controls XML
L Visual Basic (Alt+F11)
D E F G H I J K L M

Launch the Visual Basic editor.

@) Press F1 for more help.

Copyright © 2014, Rotman School of Management. 3

The VBA editor will display all of the loaded Excel projects and add-ins. What is relevant is the
VBAProject (Book1) that you are currently working on. Note: Book1 refers to the name of your excel
spreadsheet file and will change as you change your filename.

i Microsoft Visual Basic - Book 1
File Edit View Insert Format Debug Run Tools Add-Ins Window Help
M- a2 9% » g BEFY O _

;ﬁ atpvbaen.xls {ATPYBAEN.XLAM)
&% BTools (BTools.xla)
J=-%: VBaProject (Book1)
-5 Microsoft Excel Objects

‘- EF] sheetl (Sheet1)
SheetZ (Sheetz)

: Sheet (Sheet3)
ﬁ'] This\Warkboak,
H-£f ¥BAProject (BRes.xla)
&k ¥BAProject (CIQMod.xla)
[]"-gﬁ YBAProject (FUNCRES.XLAM)

Properties - Sheet1 |
|5heet1 Warksheet ;I

Alphabetic |Categorized I

Sheet1
DisplayPageBreaks False
DisplayRightToLeft False
EnablefutoFiker False
EnableCalculation True
EnableFormatConditionsd True
Enablecutlining False
EnablePivotTable False
EnsbleSelection 0 - xIhoRestrictions
rame Sheet1
Scrollarea
Standardwidth .43
Wisible -1 - x|Sheetvisible

We will begin by writing some basic procedures in your Book1.xls. In order to do this, create amodule
in your book by going to Insert -> Module.

Modulel will be added to your Book1 project and a code window will open on the right hand side
allowing you to input your programming code.

The first step is to write a very simple procedure. A procedure is a set of programming lines that are
run by the computer whenever instructed to do so. Procedures are defined with the lines “sub
<procedure>" and “end sub” enclosing them. We will define a procedure named “message” by
inputting “Sub message” into the code window. As soon as you type “Sub message” (without quotes)
and press enter, VBA will automatically format the text by adding brackets after message and add
“End Sub” to the next line.

Copyright © 2014, Rotman School of Management. 4

4@ Microsoft Visual Basic - Book 1
EEiIe Edit View Insert Format Debug Run Tools Add-Ins Window Help

H =R ™ NREENCS 9 ¢y o om S EFW @ LnlColl B

Project - YBAProject
E = |3 g

@ atprbaen.xls (ATPYBAEN.XLAM) = |

@ BTools {(BTools.xla)

=-%&% vBAProject {Book1)

B} Microsoft Excel Objects

] Sheetl (Shestl)

] Sheet? {Shestz)

1 sheets (Sheet3)

histiforkbook

=5 Modules

I(Declara‘tions)

Le |

[] 3
&4 YBAProject (CIOMod.xla)

Properties - Modulel

IModuIel TModule

1]

L

Alphabetic |Categorized |

Modulel

E%ql I

We have just created a procedure called “message”. When this procedure is run, it will execute the
code. In this case, it will do nothing since we have not written any code between the beginning of the

procedure (sub) and end of the procedure (end sub).

‘;Book1 - Modulel (Code)
I(General}

j IITIESSEQE j

Sub message ()

End Sub

We will start with a basic set of code that references the built-in VBA function “MsgBox”. To do this,
type “MsgBox (“Hello World”)” into the code window between your (Sub) and (end sub). The
"MsgBox” command will cause a pop-up message box to show up in Excel when the code is executed.
After you have typed the code into the window, click on the “Play” button in the VBA editor, your code

will execute and a pop-up message in Excel should appear.

Copyright © 2014, Rotman School of Management.

& Microsoft Wisual Basic - Book 1 =10l x|
: File Edit View Insert Format Debug Run Tools Add-Ins Window Help Type a question for help |+
ME-H B @AY @ n2colll

Project - YBAProject)
_] 3 ! -Book1 - Modulel (Code)
B E = 7] J Imessage
B @ atpvbaen.sls (ATPYBAEN.XLAM) |
I @ BTools {BTools.xla) Sk ﬁesgagr [EFH 1o Torlg" -
-84 ¥BAProject (Book1) agBox| ("Hello World")
E| @ M|cn:-soFt Excel Objects End Sub
. E ‘-'] P—‘ | v
5!
@ ThisWarkbook. ‘ Home Insert Page Layout Formulas Data Review
E| @ Modules *
22 Modulel Cut L
E]---@ ¥BAProject {BRes.xla) o _lqha Calibri ‘A A ‘ | - =
-8 VBAProject (CIQMod.xla) = oot Copy
i asie » - - P - - =
S Frormatranter | B L U - ||—{’*’. A=
Modulet Hode = Clipboard] Font]
Ashabetc | ategorze | [Hle Edit View] £
VELIEY] Modulel = - - T

Ty B

Hella Wiorld

O |~ |&n (L0 [| ||

You have just completed writing and running a procedure in VBA. Obviously running the procedure
from the VBA editor is rather cumbersome, so the next step involves linking the macro to an Excel
button so that it is easier to run the procedure.

To create the Macro button, go back to the Developer tab in Excel and click on Insert, and then select
the first option “Button”.

Q - - F Bookl - Mic

’fd_‘\
Ea,
G

'* Home Insert Page Layout Formulas Data Review View Developer Add-Ins

.t ERecnrd Macro | = % Eproper‘ties E _-}Map Properties L"ﬁ]mpon
E ﬁ Use Relative References | &‘J\.«'Eew Code ' {i":i Expansion Packs _JJJ Export

Visual Macros Insert | Design Source
Beicic hﬁMacro Security i Moc?e 'ﬂ Run Dialog ""'; Refresh Data
Code _ Form Controls XML

N10 - e | _‘EF#E@

S .- TN IS+ N - S I l od | ot] 1] K | L
Button (Form Controlj

] =B B
|
|

e Ad=%

o=

Copyright © 2014, Rotman School of Management. 6

When you move your mouse over the spreadsheet, the mouse cursor will become a crosshair instead
of an arrow. Click and drag anywhere on the spreadsheet to draw the button. Once you finish drawing
the button, the “Assign Macro” form will appear, select “message” (the name of your macro you just
wrote), then click OK. Now that you have assigned the procedure “message” to the button, the
procedure will be executed each time you click the button. Note: If you change the name of your
procedure, do not forget to re-assign your Macro. In order to re-assign the macro, you will only need to
right click on the button and then select “Assign Macro”

rJ‘-' e ¥

Ca
) -
Home Insert Page Layout Formulas Data Review View Developer Add-Ins

~_-| Record Macro il ~ssign Macro 2ixl
. ::’]USE Relative References N = Macro name:
visual Macros Insert Desion [hessage = Edit |
Basic I\ Macro Security N k = =
o — Recard... |
Button 1 - Jx |
A B C D E F
1
2
2
: -]
5 Macrosin: |All Open Workbooks j
6 Description
I
8

==
e

Once that is complete, left-click on the button and your “Hello World” message box should appear. If
you ever want to edit this object (resize, redirect, etc.) right click on it and a context menu will appear
allowing you adjust the box.

To understand a little bit more behind the programming, we will revisit the code and modify it to be
slightly more complex. In the Visual Basic Editor, we are going to modify the code to read “MsgBox
Cells(1,1)” instead of “MsgBox (“Hello World”)".

Much like Microsoft Excel, VBA assumes that any text wrapped in “quotes” is plain text, whereas
anything not wrapped in “quotes” is a function, procedure, or operation. Since there are no quotes
around “Cells(1,1)”, it will not say “Hello Cells(1,1)”, instead, it will follow the command of Cells(1,1).

A Microsoft Visual Basic - Book 1
Efile Edit View Insert Format Debug Run Tools Add-Ins Window Helj
HE-EJ s a9 1 a3 EFY @ 1n4gcoll

broject - VBAProject X -Book 1 - Modulel (Code)
E =4 L I{General} j I""'E=E=E=
-8 atpvbaen.xls (ATPYBAEN.XLAM) =
@ BTools (BTools.xla)
=-&% ¥BAProject (Book1)
. 225 Microsoft Excel Objecks

. fH) sheetl (Sheet1) |

e BH | Sheetz (Sheetz)

Subh messadel)
H=gBox Cells(1l, 1)
End 3Sub

Copyright © 2014, Rotman School of Management. 7

The Cells(x,y) command is a function in Excel that instructs VBA to replace itself with the data from
the spreadsheet row x, column y. Essentially the way VBA interprets this set of code is:

«_n

MsgBox(“x”) means “Create a message box with the text x”

Replacing (“x”) with Cells(1,1) means we will use the data from the cell located in row 1, column 1.
MsgBox Cells(1,1) means “Create a message box with the data from row 1, column 1”

Now go to the Cell Al in the current Excel Sheet1 and type in “Bob”. Click on your Macro button, the
result should be a message box that says “Bob”. Hint: If you want to reference cells from other sheets,
you can do this by typing Sheet3.Cells(1,1). This will now use the data from cell A1 on Sheet3.

We can make this more complex by adding an equation into the procedure. Go back to the VBA editor
and change your code to the following:

‘-Book 1 - Modulel (Code) - - O] x|
I(General} j Imessage j
Fub message () =
M=gEBox Cells(l, 1) & Cells(2,1) —
End Sub

Go to your Excel Sheet and type “Sally” into Cell A2, and click your macro button. The result should
be:

iy B
1 Bob

2 [5all
S —
L Button 1

Microsoft Ex: x|

a
5
] BobSally
T
8
9

]
2
m

To clean this up a little bit, we will make another adjustment to the code by adding the word “and”
between the two references. This is accomplished as follows:

Copyright © 2014, Rotman School of Management. 8

‘:Book1 - Modulel (Code)
I{General} j Imessage

ZJub message ()
MagBox Cells(l, 1) & " and "™ & Cellsiz, 1)
End 3Suhb

Notice the quotes around the word “and”, as well as the space between the quotes and the word “ and
”. Without the spaces, the message box would simply say “BobandSally”. Alternatively without the
“quotes” around <and>, VBA would think “and” is a command instead of using it as “text”.

The last code adjustment that we will make is to add a mathematical equation to our message box.
This is accomplished as follows:

‘:Book 1 - Modulel (Code)
I(General} j Imessage

Sub message ()
MsgBox Cells(l, 1) & "™ and " & Cells(Z2, 1:|| & Cells (3, 1) * Cellsi4, 1:||
End 3ub

Type the values “3” and “5” into cells A3 and A4 and run your procedure by clicking the button. The
result should be “Bob and Sally15”. Since we used the asterisk “*” between Cells(3,1) and Cells(4,1),
VBA is instructed to multiply the values from these two cells, and then append them as text to the
rest of the text.

Button 1

Bob and Sally15

L=l = R LV = T, B S TR R S

=

This concludes the basic VBA training that you will need in order to access the RIT API. You are now
able to write a simple set of instructions (a procedure) in VBA using a predesigned function (MsgBox)
and execute it via the Button that was created. In the next section, you will use the skills that you have
learned, and apply them to trading!

Copyright © 2014, Rotman School of Management. 9

VBAAPI Commands for RIT

Setting up RIT VBA API configuration

Application Programming Interface (API) commands in Excel VBA can both retrieve information
from and perform actions on the Rotman Interactive Trader (RIT).

To begin, start with a NEW spreadsheet and access VBA. In order to access RIT"s built-in VBA
commands, you will need to add it as a reference to your VBA project by going to: Tools ->
References

£ Microsoft Visual Basic - Bookl

EEiIe Edit View [Insert Faormat Debug PRun | Tools | Add-Ins Window Help

: [s % B3 @) B4 meferences...
BEE-d 4 Ln s SN References - VBAProject

Project - VBAProject

E== Macres.. Available References:
&% atpvbaen.xls (ATPVBAEN.XLAM) Options...
=83 VBAProject (Book1)

! -5 Microsoft Excel Objects

: BB Bheet1 (Sheet1)

Additional Controls...

@

i

[IRMCEmail 1.0 Type Library -] Cancel
[IRMCHook 1.0 Type Library

[JRMCInboxManager 1.0 Type Library
[IRMDIgTracker 1.0 Type Library Browse...
[JRMEnabledBrowser 1.0 Type Library

VBAProject Properties...

Digital Signature...

i

48] ThisWorkbook
- VBAProject (FUNCRES.XLAM)

When the Reference window appears, scroll down and check the item “Rotman Interactive Trader”.
This step loads the Rotman commands and functions into VBA so that you can reference them.
Next, create a module in your file by going to Insert -> Module.

@ Microsoft Visual Basic - Book 1

File Edit View Insert Format Debug Run Tools Add-Ins Window Help T
‘BEE-E kB9 e u e &EFY @Il coll .
HIE SATE X Boo 0 = ode

E =3] I(General) j I(Declarﬂtinns)

@ atpvbaen.xls (ATPYBAEN.XLAM) &

@ BTools (BTools.xla) |
B8 vBAProject {Book1)
=125 Micrasoft Excel Objects
Sheetl (Sheetl)
SheetZ {Sheetz)
Sheet3 (Sheetd)

% 1 This\Workbaok
5 Modules
&% Modulel
YBAProject (BRes.xla)
B4 ¥BAProject {CIQMod.xla)

L

Properties - Modulel =]
|Module1 Module ;I

Alphabetic ICatagorizad I

r Modulel

Copyright © 2014, Rotman School of Management. 10

VBA API Initialization

Then, initialize a new Rotman Interactive Trader API object using the following code:

Dim API As RIT2.API
Set API = New RIT2_API

Once the RIT API object is initialized, you can start writing APl commands. In general, the syntax for
an APl command is made up of 3 main parts: the object, the method, and the parameter(s) (optional),
as demonstrated in the following sample code:

API.CancelOrder (order_id)
r 1 1

Object Method Parameter

In this example, API is the object that actions are performed on. The method, CancelOrder, is the
action to perform on API (in this case, the action is to cancel an order). The parameter, order._id,
specifies details of the action (here, it specifies the order ID of the particular order to cancel).

Depending on the action that a method performs, it may or may not require a parameter. In the
example above, APLCancelOrder requires a parameter to specify which order to cancel. In the
following sections you will see examples of methods which do not require a parameter. These
methods perform general actions. There are also examples demonstrating the use of more than one
parameter, separated by a comma.

Other than performing actions, methods can also return a result (called the return value). It can be
stored in a variable or a cell in an Excel worksheet for later reference. The example APILCancelOrder
does not have a return value.

Submitting an Order

The following command adds an order to RIT.

General command Syntax:

APIL.AddOrder(ticker, size of trade, price of trade, buy/sell, Imt/mkt)

Copyright © 2014, Rotman School of Management. 11

Parameters:

Parameter Description Possible Values
ticker Ticker symbol of a stock “ALGO”, “CRZY”, Range(“A1”), etc.
size of trade Bid size or ask size 500, 10, Range(“A1”), Cells(2,3), etc.
price of trade Bid price or ask price* 10.00, 15.25, Range(“A1”), Cells(3, 4), etc.
Buy order: API.BUY or 1**
buy/sell Buy or sell an order
Sell order: API.SELL or -1**
Limit orders: API.LMT or 1**
Imt/mkt Type of an order

Market orders: API.MKT or 0**

* When inputting a market order, the price of trade must be specified with an arbitrary number. This
number will be ignored as all market orders transact at the market price. See example in sample code
2.

**While you can code the buy and sell parameters directly with APL.BUY and APL.SELL, or indirectly
with 1 and -1, if you are referencing cells you must use 1 (for buy) and -1 (for sell). You will get an
error if you reference cells containing the corresponding text values API.BUY and APIL.SELL.
The same applies to referencing Imt_mkt parameters. See example in sample code 3.

Let’s start by simply submitting a buy order. This can be accomplished with the following code:

Sub submitorder()

Dim APl As RIT2.API

Set APlI = New RIT2_API

Dim status as Variant

status = APl _.AddOrder("'CRZY', 1000, 5, API.BUY, API.LMT)
End Sub

Note that the example is setup assuming that students are trading a case with a stock “CRZY”. If you
are trading a different case, you will need to change the ticker otherwise the command will not work

since the security “CRZY” does not exist.

As you type the beginning of the command “API”, you will notice that a dropdown box will appear
showing all of the different API commands that you can access.

Copyright © 2014, Rotman School of Management. 12

- Bookl - [Modulel (Code)]

Debug PRun Tools Add-Ins Window Help
PN @ B B ¢ @ Lnscois

I (General) j I submitorder

Subk submitorder()
Dim API As RITZ.API
Set API = New RITZ.APT
Dim =tatus As Variant
status = LRPI.|
End Sub =B iAddOrder
= AddClueuedOrder
E& BUY —
=% CancelOrder
=% CancelCrderBExpr
=% CancelQueuedOrder
= ClearCQueuedOrders =

i

You will also notice that as you type in the APL.LAddOrder command, a tooltip will show you the
different command line parameters that are required for the API.AddOrder command.

s - Bookl - [Modulel (Code)]

4 Run Tools Add-Ins Window Help Type a question for help -
b A HFE - @ sz z

Iiaenerall j Isubmi‘torder

Sub submitorder ()
Dim API As RIT2.RPI
Set API = New RITZ.API

1o Ly

7 ot
status = AFI.AddOrder (|
End Sub AddOrder(ticker As String, volume As Long, price As Double, dir As Long, type As Long) As Boolean |

Once you have completed the code, you can click on the red Play button in order to run the procedure.
Click the button a few times and visit your RIT Client, you should see limit orders placed at $5.00 to
buy shares of CRZY.

Return Value: True or False

There are a few sample codes you can try in order to practice submitting different types of orders.
Please feel free to try them.

Sample Code 1 - Limit Order:
Submit a limit buy order for the stock CRZY with size 1000, at a price of $5.00. Assign True to the

variable status if the order is successful, and assign False otherwise. Use “Range” to call cells that
contain volume and price information. (So in this case, you should type 1000 in cell A1, and type 5 in

Copyright © 2014, Rotman School of Management. 13

cell A2 as they are referenced for volume and price, respectively.) Note that Alternative 2 uses 1
instead of APL.BUY and 1 instead of APL.LMT.

Alternative 1:
Dim status as variant
status = API._AddOrder("'CRZY", Range(''Al"), Range(''A2™),
API_BUY, API_.LMT)

Alternative 2:
Dim status as variant
status = API._AddOrder("'CRZY", Range(''Al'), Range(''A2"), 1, 1)

Sample Code 2 - Market Order:

Submit a market sell order for the stock CRZY with the size found in the cell A1 at the market price.
Assign True to the variable status if the order is successful, assign False otherwise. Note that the sell
price is specified here (with an arbitrary number, 1) even though it is ignored.

Alternative 1:
Dim status as variant
status = API._AddOrder("'CRZY", Range(''A1'), 1, API.SELL,
API _MKT)

Alternative 2:
Dim status as variant
status = APl .AddOrder("'CRZY", Range("'A1"™), 1, -1, 0)

Sample Code 3 - Referencing Cells for buy_sell:

Submit an order for the stock CRZY with the size found in the cell A1 at the market price. Assign True
to the variable status if the order is successful, assign False otherwise. Whether the market order is
to sell or buy depends on the value in the cell A2. Note that if a cell reference is used for the buy_sell
parameter, the number value must be used in the cells. In other words, the cell A2 must contain 1 or
-1. The strings “APL.LBUY” or “APL.SELL” will not work.

Referencing cells for the Imt_mkt parameter follows the same pattern. The cell being referenced must
contain 0 or 1 instead of the text “APLLMT” or “APL.MKT".

Dim status as variant
status = APl ._AddOrder("'CRZY", Range(''A1l™), 1, Range(*'A2"), 0)

Copyright © 2014, Rotman School of Management. 14

Sample Code 4 - Using AddQueuedOrder:

Similar to AddOrder, you can also use AddQueuedOrder to submit a limit or market, buy or sell order.
While all the parameters for AddQueuedOrder are the same as for AddOrder, the difference lies in
the return value. While AddOrder returns True/False, AddQueuedOrder will return -1 (for failure to
submit an order when the case is inactive) or an internal queued order ID* (for successful order
submission).

Dim status as variant
status = APl .AddQueuedOrder("'CRZY", 1000, 5, API.BUY, API_LMT)

*When an order is submitted using either AddOrder or AddQueuedOrder API command, the RIT
Server ‘queues’ an order before processing it in the system. Hence, when each order is queued, an
internal queued order ID is first provided, and is converted later to an order ID when it appears on
the Market Depth Book. This entire order submission process is generally completed in a fraction of
a second when there are not many orders. However, one may choose to specifically use
AddQueuedOrder in order to retrieve an internal queued order ID and cancel it individually before
an order is processed. For more detailed information, please refer to ‘Sample Code 3 - Using
CancelQueuedOrder’ under the ‘Cancelling an Order’ section below.

In addition, you can use the IsOrderQueued command to see if any particular order is currently
queued. The command requires an internal queue ID as an input, and returns “True” for the order
that is queued (at the moment), and “False” for any orders that are not queued (i.e. whether the order
has been queued previously but successfully submitted, or simply the order has failed to be queued).

Dim status as variant
status = API._AddQueuedOrder(**CRZY'", 1000, 5, API.BUY, API.LMT)
API . 1sOrderQueued(status)

From the above example, the [sOrderQueued command will return “False” because by the time that
the VBA code reaches the “AP1 . IsOrderQueued(status)” line, the order has been already
queued and submitted from the API.AddQueuedOrder command. Hence, the command will return
“False” since the order is not queued anymore. If there are several orders submitted by the API code,
the IsOrderQueued command may return “True” if it is still queued.

Cancelling an Order

The following command cancels an order based on the order ID specified by the parameter.

General command Syntax:

API.CancelOrder (order._id)

Parameters:

Copyright © 2014, Rotman School of Management. 15

Parameter Description Possible Values

Order_id Order ID* 3142, 2323, Range(“A1”), etc.

*Order IDs can be retrieved via the RTD functions - refer to the “Grabbing Ticker Specific Data Fields”
section from the RIT - User Guide - RTD Documentation.pdf.

Return Value: None

There are a few code samples you can try in order to practice cancelling orders. Please make sure
that you have submitted orders before you try cancelling them.

Sample Code 1:

Cancel the order with the Order ID 1500. Usually, you would make this more robust by linking the
value to a cell location with the Cells(x,y) or Range(“mx”) functions as in Sample Code 2.

Sub cancelorder()
Dim API As RIT2_API
Set API = New RIT2_API
API1 _CancelOrder (1500)
End Sub

Sample Code 2:
Cancel the order specified in cell A1
AP1 _CancelOrder (Range('Al™))

Sample Code 3 - Using CancelQueuedOrder:
You can use CancelQueuedOrder to cancel an order that is ‘queued’ on the RIT Server before it
appears on the Market Depth Book. Once you retrieve an internal order ID using AddQueuedOrder
API command (from the ‘Sample Code 4 - Using AddQueuedOrder’ under ‘Submitting an Order’
section), you can use the following command to cancel it:

API.CancelQueuedOrder (internal queued order ID)
In case you would like to cancel all queued orders, you can use the following command:

AP1 _.ClearQueuedOrders

Again, please note that the above APl commands only cancel the queued orders before they appear
on the Market Depth Book. In order to cancel the orders that are submitted and visible on the Market
Depth Book, please use the APIl.CancelOrder commands from above or follow the Cancel Order
Expression instructions below.

Copyright © 2014, Rotman School of Management. 16

Cancel Order Expression

The following command cancels all orders that satisfy the expression specified in the parameter.

General command Syntax:
API.CancelOrderExpr (order_expr)
Parameters:
Parameter Description Possible Values*
order_expr Order expression “Price > 20.00”, “Volume = 400",

“ticker = ‘CRZY"”,
“Price > 20.00 AND Volume = 400",
“Price > 20.00 AND Volume = 400", etc.

* Available operators include = (equal to), <> (not equal to), > (greater than), < (less than), >= (greater or
equal to), <= (less than or equal to). You may also use brackets “()” to clarify order of operations.

Return Value: None
Sample Code 1:
Cancel all orders that have a price greater than $20.00 and a volume equal to 400.

APl .CancelOrderExpr ("'Price > 20.00 AND Volume = 400")
Sample Code 2:
Cancel all orders associated with the stock CRZY.

API _CancelOrderExpr ('ticker = "CRZY™™)

Sample Code 3:

Cancel all orders that have a price greater than $20.00 and a volume equal to 400, or all orders
associated with the stock CRZY.

API1 .CancelOrderExpr (*'(Price > 20.00 AND Volume = 400)
OR ticker = "CRZY"™)

Accessing and Accepting/Declining Tender Offers?

11f the API commands do not work, please make sure that you have the most recent version of the APl installed on
your PC. You can check this by following the instructions at
http://rit.rotman.utoronto.ca/documents/API Install Instructions.pdf

Copyright © 2014, Rotman School of Management. 17

http://rit.rotman.utoronto.ca/documents/API_Install_Instructions.pdf

In addition to the order submission and cancellation in RIT, the following API commands can be used
to retrieve real-time data from RIT on institutional tender offers, in addition to accepting/declining
those tender offers. Note that the “Cells” (or “Ranges”) VBA command is used in the examples below
in order to display the result in a cell.

APl Command Syntax: AP 1 . GetActiveTenders()
Description: Currently active tenders offered to the trader
Return Value: An array of integers, with each integer representing the ID number of a tender offer
Example
Sub test()
Dim APl As RIT2.API
Set APl = New RIT2_.API
tenders = API.GetActiveTenders()
Cells(1, 1) = tenders(0)
End Sub
Notes: “tenders(0)” is accessing the first value in the array returned by “APl.GetActiveTenders()”. Arrays in
VBA are zero-indexed. For the second value in the array, one would use “tenders(1)”.

APl Command Syntax: AP 1. GetActiveTenderInfo(id)

Description: Information on the requested active tender

Return Value: An array of information on the requested tender offer: [Tender ID, Ticker, Quantity, Price,
Received Tick, Expiry Tick].

Example

Sub test()
Dim API As RIT2_API
Set APl = New RIT2.API
tender = APl .GetActiveTenderInfo(0)
Range("A1"™) = "Tender ID: " & tender(0)
Range("'A2") = "Ticker: " & tender(1)
Range("'A3™) = "Quantity: " & tender(2)
Range(""A4™) = "Price: " & tender(3)
Range(*'A5") = "Received Tick: " & tender(4)
Range(""'A6") = "Expiry Tick: " & tender(5)

End Sub

Notes: In the above code, information on the tender with an ID of 0 is being fetched. As with
“AP|.GetActiveTenders()”, the result is returned as an array of information on that tender. Each value can
be accessed using VBA array notation.

APl Command Syntax: AP1 . AcceptActiveTender(id, bid)
Description: Accepts the tender offer indicated by the ID
Return Value: True if successful, false otherwise
Example
Sub test()
Dim APl As RIT2.API
Set APlI = New RIT2.API

Copyright © 2014, Rotman School of Management. 18

Dim status As Variant
Status = APl .AcceptActiveTender(0, 0)
Cells(1, 1) = status
End Sub
Notes: A bid must be specified when sending a command to accept a tender offer. However, if the tender
has a set bid, then this value will be ignored. In the above code, the tender with an ID of 0 is being accepted.

APl Command Syntax: AP1. DeclineActiveTender(id)
Description: Declines the tender offer indicated by the ID
Return Value: True if successful, false otherwise
Example
Sub test()
Dim APl As RIT2_API
Set API = New RIT2_API
Dim status As Variant
Status = APl .DeclineActiveTender(0)
Cells(1, 1) = status
End Sub

Notes: In the above code, the tender with an ID of O is being declined.

Additional API commands

In addition to the order submission and cancellation in RIT, the following API commands can be used
to retrieve real-time data from RIT instead of using the RTD Link functions in Excel. Note that the

“Cells” (or “Ranges”) VBA command is used in the examples below in order to display the resultin a
cell.

APl Command Syntax: API . GetCurrentPeriod
Description: Current period
Equivalent Excel RTD Function: =RTD("rit2.rtd",,"PERIOD")

Example

Sub test()
Dim APl As RIT2.API
Set APlI = New RIT2_API
Dim status As Variant
status = APl .GetCurrentPeriod
Cells(1, 1) = status

End Sub

APl Command Syntax: AP I . GetNLV
Description: Current profit or loss
Equivalent Excel RTD Function: =RTD("rit2.rtd",,"PL")
Example
Sub test()
Dim APl As RIT2.API

Copyright © 2014, Rotman School of Management. 19

Set APlI = New RIT2.API

Dim status As Variant

status = API.GetNLV

Cells(l, 1) = status
End Sub

APl Command Syntax: AP 1 .GetOrderInfo(order_id)
Description: Detailed order information

Example
Sub test()
Dim APl As RIT2.API
Set APl = New RIT2.API
Dim status As Variant
status = APl .GetOrderInfo(1027)
Range("'A2", "12") = status
End Sub
Excel result
This APl command requires 9 columns in Excel to retrieve the order information as shown below.
A B C D E F G H | J
1 OrderlD Ticker period Buy/Sell Type Volume Price Status Remaining volume
2 1027 CRZY_M 1 BUY LIMIT 10000 0.97 PARTIAL 6000
3

APl Command Syntax: API .GetOrders
Description: Open order IDs

Example
Sub test()
Dim APl As RIT2.API
Set APlI = New RIT2.API
Dim status As Variant
status = APl .GetOrders
Range("'A2", "J2") = status
End Sub
Excel result

This APl command displays the Order IDs of any live/partial orders submitted by the user that can be found

from the Trade Blotter window from RIT Client.
A B C D E 5 G H J

709 708 707 706 215 214 139 136 #N/A #NSA

FNFE I Y

Copyright © 2014, Rotman School of Management. 20

. Trade Blotter

D Timestamp Tick Ticker Price Type
709 12:44:29 P1:129 CRZIY_M 8.45 BUY
708 12:44:29 P1:129 CRZY_M 8.67 BUY
707 12:44:28 P1:129 CRZY_M 8.87 BUY
706 12:44:28 P1:128 CRZY_M 8.88 BUY
215 12:26:56 P1:23 CRZIY_M 9.96 SELL
214 12:26:56 P1:23 CRZY_M 9.95 SELL
139 12:25:11 P1:8 CRZY_M 10.13 SELL
136 12:25:11 P1:8 CRZY_M 10.07 SELL

APl Command Syntax: APl .GetTickerInfo(ticker)
Description: Detailed ticker and portfolio information

Example
Sub test()
Dim APl As RIT2.API
Set APlI = New RIT2.API
Dim status As Variant
status = APl .GetTickerInfo(""CRZY_M"™)
Range(""A2", "'N2') = status
End Sub
Excel result
This APl command requires 14 columns in Excel to retrieve the ticker information as displayed below.
A B c D E | F| @ H | J K L M N
1 Ticker Position Last Bid Size Bid Ask Ask Size Volume Cost Unrealized P&L Realized P&L Volume
2 CRZIY_M 5000 9.11 310200 9.11 9.18 86900 0 9414500 9.21 -505.56 -1040.44 9414500

Additionally, there are the following additional API commands that can be used to retrieve the real-
time data from RIT.

APl Command syntax Description Equivalent Excel RTD Function

AP1 _GetCurrentPeriod | Current period =RTD("rit2.rtd",,"PERIOD")

API .GetNLV Current profit or loss | =RTD("rit2.rtd",,"PL")

APl .GetTickers List of tickers =RTD(“rit2.rtd”,,” ALLTICKERS")

API _GetTimeRemaining Time remaining =RTD(“rit2.rtd”,,”"TIMEREMAINING”)
APl _GetTotalTime Ticks per period N/A

APl _GetYearTime Ticks per year =RTD(“rit2.rtd”,,”YEARTIME")

Algorithmic Trading Example - Arbitrage
This example assumes that students are building the arbitrage VBA codes while they are connected

to the RIT Client with the ALGO1 case running. By default, the case runs for 300 seconds and there
is one security that is traded on two different exchanges - CRZY_A and CRZY_M.

Copyright © 2014, Rotman School of Management. 21

Before we start, please make sure that the Rotman Interactive Trader is enabled in Tools =
References. (Please refer to the “Setting up RIT API configuration” section in page 11). Once you
create a new module, you should type into the code-box on the right hand side of the window and
define a function. In this example, the function will be called “arb” and it will have one parameter
called “timeremaining”.

Zii Microsoft Visual Basic - Book1 - [Modulel (Code)]

% File Edit View Inset Format Debug PRun Tools Add-Ins Window Help

EE-H L EaEsal e s noE bkl Y@ g ca

[Gener)
E E || = . - —
Function arb(timeremaining)
-% atpvbaen.xls (ATPVBAEN.XLAM)

E-&# VBAProject (Book1) End Function
{E5 Microsoft Excel Objects
1 sheet1 (Sheet1)

] Sheet2 (Sheet2)

1 Sheet3 (Sheet3)
@ ThisWerkbook

{3 Modules

&% VBAProject (FUNCRES.XLAM)

While there are many other ways to switch on/off the arbitrage algorithm, we will use the
“timeremaining” to signal when the algorithm can start and stop. Once we initialize the RIT API, we
can have the following ‘if statement’ to control the time that the algorithm is turned on and off.

ItGeneraI] j Iarb

Function arb(timeremaining)

Dim LPT 4= RITZ.API
Set API = New RITZ2.AFI

If timeremaining < 295 And timeremaining > 5 Then
Era 1

End Function

Operationally, every time the “arb” function is run, Excel will initialize the API, and then check to see
if the time remaining is between 5 and 295. As shown in the above example, the code currently
initializes the API and allows for algorithmic trades to be submitted if the time remaining is between
5 and 295. (However, it will not submit anything because there are no commands written after the
[F statements yet.)

The VBA code is now setup to run the arbitrage function whenever the case is running. The last step
is to go into the code and program the logic to check for arbitrage opportunities, and execute the

appropriate trades.

Before we setup the codes, it is suggested to have the market data from RIT and bring it to Excel using
RTD links, so that we can analyze it with our algorithm.

Copyright © 2014, Rotman School of Management. 22

A B C D E F G
1 Bid Ask

2 CRZY_A 1014 1016 <-— =RTD{"rit2.rtd",,"CRZY_A","BID") =RTD("rit2.rtd",,"CRZY_A","ASK")
3 CRIY M 10.06 10.08 <-— =RTD{"rit2.rtd","CRZY_M","BID") =RTD("rit2.rtd","CRZY_M","ASK")

1 =

Now with this data linked in Excel, we can use an IF statement in our algorithm so that it only executes
the buy/sell pair or orders when an arbitrage opportunity exists. Hence, the logic should be to check
for two potential arbitrage opportunities:

If the ask price of CRZY_A is less than the bid price of CRZY_M, then the algorithm should submit a
market order to buy CRZY_A and a market order to sell CRZY_M.
If the ask price of CRZY_M is less than the bid price of CRZY_A, then the algorithm should submit a
market order to sell CRZY_A and a market order to buy CRZY_M.

The code is presented as follows:

ItGeneraI] j Iarb

Function arb(timeremaining)

Dim API R=s RITZ.RPI
Set API = HNew RITZ.AFI

If timeremaining < 295 And timeremaining > 5 Then

If Range ("CRZY A BID") > Range ("CRZY M RSK"} Then
OrderID = API.AddOrder ("CRZY M", 1000, O, ALPI.BUY, API.MKT)
OrderID = API.AddOrder ("CRZY A", 1000, O, API.SELL, API.MKT)

End If

If Range ("CRZY M BID") > Range ("CRZY & ASK") Then
OrderID = API.AddOrder ("CRZY A", 1000, 0, API.BUY, API.MXT)
OrderID = API.AddOrder ("CRZY M", 1000, 0, API,SELL, API.MKT)
End If
End If

End Function

Here, each cell is named with the security name and bid/ask information. As you can see from the
example below (highlighted in blue) Cell B2 has been named as “CRZY_A_BID”, etc. This is not a
required step, but naming each cell will help you understand the information it contains. You can use
Range(“B2”) instead of Range(“CRZY_A_BID")

CRzY_A_BID| fe | =RTD("rit2.rtd",,"CRZY_A","BID")

A B C D E F G
1 Bid Ask
2 |CRZY_A | 10.3?! 10.38 <----- =RTD("rit2.rtd",,"CRZY_A","BID") =RTD{"rit2.rtd",,"CRZY_A","ASK")
3 |CRZY_M 10.34 1035 £---e- =RTD("rit2.rtd",,"CRZY_M","BID"} =RTD("ritZ.rtd",,"CRZY_M","ASK")
A

The code sets OrderID = API.AddOrder because whenever an order is submitted to the AP], it returns
an “Order Identifier”. In our situation, we will not use the OrderID (in the future, one could use the
“Order Identifier” to check the status of the order, cancel it, etc.)

Copyright © 2014, Rotman School of Management. 23

Alternatively, this can be replaced with the examples of the code we used in the “Submitting an Order”
section above as shown below.

If timeremaining < 2%5 And timeremaining > 5 Then
Dim status As Variant

If Range ("B2") > Range ("C3™) Then
status = API.AddCrder ("CRZY M", 1000, 0, API.BUY, API.MET)
L —— .
status = API.AddOrder ("CRZY A", 1000, O, RPI.SELL, API.MET)
End If

Finally, in order to run the “arb” function, you would need to return to the spreadsheet, find a cell
and type in “=ARB(E2)”

| £ - fe | =ARB(E2)
A B 8 D E F G H |
Bid Ask Time Remaining
CRZY_A] 0 300 <--=RTD("rit2.rtd",,"TIMEREMAINIMNG")
CRZY_M 0 0

| U-!<--:ARB{E2}

[= ¥, I TR S R

This will tell Excel to execute the function “Arb” and pass into the function the value from cell E2
(which happens to be the time remaining in the simulation). In this situation, the time remaining is
300 seconds, so the code in the “IF” statement will not execute. Once the case is started (and
timeremaining is < 295), then the code in the “IF” statement will execute.

While the ALGO1 case is running, whenever the markets become crossed, the algorithm should
automatically buy shares on one market and sell shares on the other and generate a profit.

Excel runs the function (and the code) on a continual basis. Therefore, when students try to
edit the code in VBA, it will cause an error (because Excel is trying to run half-written code).

In order to proceed, students should delete the function =ARB(E2) in the spreadsheet before
editing their code, and then add it back later.

Note that this is a simple arbitrage algorithm. Please feel free to try to improve this by making it
more dynamic (i.e. link the order size and price to Excel), include the gross/net limit restrictions in
the case, etc.

Copyright © 2014, Rotman School of Management. 24

